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ESTIMATION IN TRUNCATED POISSON DISTRIBUTIONS
WITH CONCOMITANT EXPOSURE INTERVALS AND TRUNCATION POINTS
by
A. Clifford Cohen

The University of Georgia

1. INTRODUCTION

Estimation in the truncated Poisson distribution has previously
been considered by numerous writers including Bliss [1], David and
Johnson [4], Moore [6], Plackett [7], Subrahmanian [8], the writer [2,3],
and others. Our concern here is with estimation of the Poisson
parameter when the ig-l observation of the discrete random variable X
extends over a specified exposure interval of magnitude ti’ subject to
the restriction that X, > ¢, where <, is a _specified truncation point.
More specifically, our attention is directed toward maximum likelihood
estimation based on a random sample consisting of n independent
observations {xi,ti,ci}, where Xy is the number of occurrences of the
event of interest observed during the iEh interval of exposure, while
ti and c, are corresponding concomitant values. Of course, xi and ci
must be non-negative integers, but t; is permitted to assume any
positive value. Accident data in which reports are rendered for time
intervals of varying size with truncation as stipulated fall into the
category of samples under consideration here. Inspection data in which
defects per unit are reported for units of differing sizes might also

result in samples of the type considered here.



With concomitant values t, and c, given, the applicable Poisson

probability function may be written as

—Ati X.
e eyt
— = , xi=ci,ci+1,...,
1
X! F(ci)
=x. |t.,c.} = 1
Pr{X x1|t1,cl} (1)
\ 0 , elsewhere,
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2. MAXIMUM LIKELIHOOD ESTIMATION OF A
The likelihood function for a sample consisting of the n observed
values {xi,ti,ci} for which the probability function (1) is applicable,

follows as

-Ati xi
n e (Ati)
L= 1T — . (3)
= ]
1 X! F(ci)
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On taking logarithms of both sides of (3) and differentiating with

respect to A, we obtain

n n n 3F (c.)
al‘“I‘=->:ti+%zxi-):__1 2 (4)
DY 1 1 1 F(ci) A
It follows from (2) that
_ —Ati ci—l
BF(ci) e (Xti)
= = f(c;-1) . (5)

A (ci-l)!

When (5) is substituted into (4) and the resulting expression is

equated to zero and simplified, we obtain the estimating equation

n n n _
i x; = M i t, ¢ i £(c;-1)/F(c)]) , (6)

in which £(c;-1) and ?Ici) are defined by (5) and (2) respectively.
With the aid of an ordinary table of individual and cumulative

values of the Poisson function such as those of Molina [5], equation

(6) can be solved with relative ease for the required estimate i,

using trial and error techniques. Once two values Al and Az have

been found in a sufficiently narrow interval such that

G(Al) < ? x; < G(Az), where G(A) has been written for the right side

of (6), the required estimate A can be obtained by interpolating

linearly between Al and Az. Of course, standard iterative procedures




might also be employed in the calculation of A

3. SOME SPECIAL CASES
By appropriately restricting the values of ts and s in (6), we
obtain results that apply in various cases of special interest.

Certain of these specialized results are, of course, quite well known.

No Truncation — Unequal Intervals

In this case, c, = 0 for all i, 'and equation (6) leads to the

estimator

~ n n
A= x./ T t. . (7)
1 1

No Truncation — Equal Intervals

If in addition to the restriction, c, = 0 for all i, we impose the
further restriction that t, =t for all i, the applicable estimator

reduces to

A= x/t, (8)
_n
where x = I xi/n. When t = 1, as in the usual case of estimation in the
1

~

Poisson distribution, then (7) leads to the familiar estimator A = X.

Only Zero Class Truncated In Making Each Observation — Unequal Intervals

In this case c; = 1 for each i, and the estimating equation (6)
reduces to
n -At,

- i
x5 = Af [ti/(l—e

)], (9)
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a result which was obtained independently by one of the writer's

graduate assistants, Mr. S. S. Srivastava.

Only Zero Class Truncated In Making Each Observation — Equal Intervals

When we further specialize the preceeding result by requiring that
ti = t for all i, then (9) becomes

t

X = at/[1-e Y . (10)

If we specialize still further by requiring that t = 1, then (10)

reduces to
- -1
x =)[l-e 7] , (11)

as previously given in [3], where a table of the function on the right

side of (11) is provided in order to facilitate solution for the required

estimate A.

4. VARIANCE OF ESTIMATES

The asymptotic variance of A can be expressed as

. 2 1 2 -1
V() = - EE(——————"’ 1“2";{ 2 - [———I“ZL] ) (12)
an n" o

for each of the cases considered here. The second derivative in the

most general case under consideration follows from (4) as

1

n
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a result which was previously given in [2]. With the aid of tables
such as those of Molina [5], this derivative can easily be evaluated

once (6) has been solved for A. The variance then follows from (12).

5. AN ILLUSTRATIVE EXAMPLE
In order to illustrate the practical application of estimators
derived here, we consider inspection results on the number of surface
defects per unit found in products of differing surface areas but

wha~rh
H

which were manufactured on ihe same production line. In some of the
inspections, no truncation takes place. In others, the zeros are
eliminated, and in still others, both zeros and ones are eliminated.
Based on the total sample which results from combining the several
sub-samples involved, we proceed to estimate the Poisson parameter A
which characterizes the underlying common production process, and to
determine the asymptotic variance of this estimate. The total sample
available for this purpose consists of inspection results on 422
separate manufactured uhits. These data are presented in Table 1, with
the total sample broken down into eight sub-samples having values of
(t,c) as follows: (1,0),(1.5,1),(2,1),(2.5,1),(3,1),(1,2),(2,2), and
(3,2). The value t = 1 indicates a surface area of one unit, while

t = 2 indicates a surface area of two units, etc. For the total

number of defects found in the 422 units inspected, we have

422 422
L x; = 1597. For the sum of the t's, we have = ti = 100(1)
1 ‘ 1

+ 94(1.5) + 50(2) + 32(2.5) +28(3) + 30(1) + 34(2) + 54(3) = 765.

These values are substituted into (6) which must then be solved for




TABLE 1

NUMBER OF SURFACE DEFECTS FOUND IN

FINAL INSPECTION OF 422 MANUFACTURED UNITS

No. Defects Frequencies n Row
X
Totals
c=0 c=1 c=2
X t=1 t=1.5 Jt=2 jt=2.5 Jt=3 t=1 jt=2 }t=3
-

0 13 _=_-—:“‘; <‘> >< 13

1 28 16 1 0o ] ~. o

2 27 21 3 1 14 6 3 81

3 17 22 5 3 9 5 3 73

4 10 16 11 6 ) 5 7 7 67

5 11 9 5 4 1 6 7 46

6 6 4 5 5 1 5 9 37

7 1 3 4 4 3 8 23

8 1 2 2 3 1 6 15

9 1 1 1 1 ) 9

10 2 3 5

11 2 2

12 1 1
Column

Totals 100 94 50§ 32 28 301 341 54 422

anx 200 294 203 ] 154 162 86 {153 }345 1597




the required estimate i. As a first approximation, we try Al = 2.0000,
which comes from the sub-sample of size 100 with t = 1 and ¢ = 0. In
general, satisfactory first approximations might be obtained from any
one or a combination of the available sub-samples. In some circum-
stances, a judicious guess might even suffice. We subsequently arrive

Fy A
at the final estimate A = 2.027, by linear interpolation as follows

A G(A)
2.100 1652.91
422
2.027 L x. = 1597.00
1 1
2.000 1576.75

where G()A) has been written for the right side of the estimating
equation (6). For the variance of the above estimate, we employ (12)

and (13) to calculate V(1) = 0.0027.
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